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Studies of interlayer transport in layered metals have generally made use of zero-temperature conductivity
expressions to analyze angle-dependent magnetoresistance oscillations �AMRO�. However, recent high tem-
perature AMRO experiments have been performed in a regime where the inclusion of finite temperature effects
may be required for a quantitative description of the resistivity. We calculate the interlayer conductivity in
layered metals with isotropic and anisotropic Fermi surface properties allowing for finite temperature effects.
We find that resistance maxima are modified by thermal effects much more strongly than resistance minima.
We also use our expressions to calculate the interlayer resistivity appropriate to recent AMRO experiments in
an overdoped cuprate which led to the conclusion that there is an anisotropic, linear in temperature contribution
to the scattering rate and find that this conclusion is robust.
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I. INTRODUCTION

Angle-dependent magnetoresistance oscillations �AMRO�
in the interlayer resistance of layered metals provide a means
to determine Fermi surface properties of such systems.1

Maps of two and three dimensional Fermi surfaces have been
determined for a wide variety of materials.2–7 AMRO can
also be used to infer information about possible anisotropies
in the momentum space of Fermi surface properties such as
the scattering rate.8–16 In particular, recent AMRO experi-
ments by Abdel-Jawad et al.9 reveal that in the overdoped
cuprate Tl2Ba2CuO6+� �Tl2201� the scattering rate contains
an anisotropic piece that varies with the same symmetry as
the superconducting gap and grows linearly with tempera-
ture. The measured anisotropy in the scattering rate may
have relevance to the origin of high temperature supercon-
ductivity in cuprate superconductors, as the strength of the
anisotropic piece of the scattering increases with the critical
temperature, Tc.

11 Scattering rate anisotropy has been de-
tected in several other cuprates using angle-resolved photo-
emission spectroscopy �ARPES�,17–20 optical conductivity21

and in-plane transport measurements.22 Theoretical support
for such anisotropic scattering comes from ideas about hot
and cold spots on the Fermi surface, first raised in the con-
text of optical conductivity,23 and appears to arise naturally
in dynamical mean field24 and functional renormalization
group25 calculations on the two-dimensional Hubbard model.

An advantage of AMRO over other techniques which use
oscillations to obtain information about the Fermi surface,
such as de Haas–van Alphen and Shubnikov–de Haas oscil-
lations, is that they can be measured at elevated tempera-
tures, provided �c�, the combination of the cyclotron fre-
quency and the transport lifetime, is large enough. To date,
expressions used to fit AMRO data have been derived assum-
ing zero temperature, which should work reasonably well for
temperatures T�TF, the Fermi temperature. However, re-
cently there have been relatively high temperature AMRO
experiments for which corrections to the zero-temperature
approximation may be needed. For instance, the experiments
in Refs. 9 and 12 were performed for T up to 55 K, corre-
sponding to a maximum thermal energy of approximately

0.02 of the Fermi energy �F=kBTF. At this temperature scale,
one expects the zero-temperature approximation to work rea-
sonably well in fits to AMRO. However, more recent
experiments26 have extended AMRO to temperatures as high
as 110 K ��0.04TF� where finite temperature effects should
be more relevant—we show below that finite temperature
corrections to AMRO can be quantitatively important at
these temperatures.

In this paper we obtain two main results: �i� we generalize
existing zero-temperature semiclassical AMRO formulae for
the interlayer conductivity in layered metals with anisotropic
Fermi surface properties to finite temperatures; and �ii� we
establish the robustness of the fitting procedure used in Ref.
9 to finite temperature corrections. We use our expression for
the interlayer conductivity �Eq. �16�� to generate numerically
the AMRO expected in overdoped thallium cuprate for an
isotropic scattering rate. Fitting to the simulated AMRO with
zero-temperature expressions reveals no significant aniso-
tropic contribution to the scattering rate. We find that whilst
the inferred scattering rates in Ref. 9 are robust to finite
temperature corrections, these corrections will be required in
fits to AMRO at higher temperatures.

This paper is structured as follows: in Sec. II we present
our analytic calculations of AMRO. In Sec. III we perform
numerical calculations to check whether the finite tempera-
ture effects can masquerade as linear in T anisotropic scat-
tering. In Sec. IV we summarize our results and conclude.

II. CALCULATION OF AMRO

In this section we briefly review the calculation of the
interlayer conductivity in a layered metal allowing for non-
zero temperature and treat the cases of isotropic Fermi sur-
face properties �for which we can make considerable analytic
progress� and anisotropic Fermi surface properties sepa-
rately. We assume a simple model of a layered metal in
which the c axis is the weakly conducting direction and take
a dispersion relation of the form

��k� = �2d�kx,ky� − 2tc�kx,ky�cos�ckz� , �1�

where k= �kx ,ky ,kz� is the electron wave vector, �2d is the
dispersion in the kx-ky plane, tc�kx ,ky� is the �possibly aniso-
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tropic� interlayer hopping term �assumed to be small com-
pared to the Fermi energy�, and the parameter c is the dis-
tance between the conducting layers.

We treat the electrons semiclassically and calculate
AMRO by solving the time independent and spatially uni-
form Boltzmann equation in the relaxation time approxima-
tion,

F ·
� f

�p
= −

f − fT

�
, �2�

where f�p� is the electron distribution function, in terms of
momentum p, fT is the Fermi-Dirac distribution, F=−e�Ezẑ
+v�B� is the Lorentz force for a magnetic field B and a
weak electric field perpendicular to the conducting layers, Ez,
v=	−1�k��k� is the velocity, and � is the transport lifetime.
In general � may depend on both the electron momentum and
energy. We assume that the magnetic field B
=B�sin 
 cos � , sin 
 sin � , cos 
� is applied at an angle 

with respect to the z axis and an angle � with respect to the
x axis, as shown schematically in Fig. 1.

For weak electric fields we can write f � fT+�f , where
�f �O�Ez�. Neglecting small terms in the electric field and
the hopping, tc, we obtain

� f

��
+

f

�0��,�����,��
= −

evzEz

�0��,���−
� fT

��
� , �3�

where � is the angular position in momentum space and � is
energy. We relabeled �f → f for convenience, and define10

�0��,�� = eB cos 

k	��,�� · v	��,��

	
k	��,��
2
,

with v	 = �vx ,vy� and k	 = �kx ,ky�. The in-plane dispersion re-
lation �2d�kx ,ky� determines v	 and k	; accordingly, if �2d is
anisotropic, v	, k	 and �0�� ,�� will also be anisotropic in
momentum space.

Equation �3� holds for both isotropic and anisotropic
Fermi surfaces. The formal solution to Eq. �3� is

f��,�� = − eEz�
0




d��
−


�

d��G��,��,��
vz��,���
�0��,���

�−
� fT

��
� ,

�4�

where

G��,��,�� = exp�− �
��

� d�

�0��,�����,��
 , �5�

is the probability that an electron will travel around the
Fermi surface from an angle �� to � without being
scattered.10 With this expression we may calculate the cur-
rent density jz=−2e� d3k

�2��3 vzf and hence the interlayer con-
ductivity �zz. In Sec. II A and Sec. II B we present the re-
sulting finite temperature interlayer conductivity for both
isotropic and anisotropic cases, respectively.

A. Isotropic Fermi surface

We first consider finite temperature effects for an isotropic
layered metal, with isotropic scattering rate 1 /� �we allow �
to depend on � and unless otherwise specified, make no as-
sumptions about its temperature dependence�, isotropic hop-
ping tc and an isotropic dispersion,27

�2d�kx,ky� =
	2

2m�
�kx

2 + ky
2� , �6�

where m� is the effective mass. This gives �0=eB cos 
 /m�.
In the zero-temperature limit the expression for the inter-

layer conductivity is28,29

�zz�
� = �0�J0
2��kF� + 2�

s=1



Js

2��kF�
1 + �s�0��2
 , �7�

where �0=
2e2m�ctc

2�

�	4 ��, if energy dependent, is evaluated at
the Fermi energy� and �=c tan 
. To generalize this expres-
sion to finite temperature we must integrate over energy in
calculating �zz. The integral to be evaluated is

�zz = �0�
0




d��−
� fT

��
�����

��J0
2����� + 2�

s=1



Js

2�����
1 + �s�0�����2
 , �8�

where the energy dependence of the scattering time � must
be taken into account, �0=2e2m�ctc

2 /�	4, and �=
�kF

��F
. Using

a Sommerfeld expansion30 and keeping terms to order
�T /TF�2, we arrive at the result

�zz � �0������J0
2����� + 2�

s=1



Js

2�����
1 + �s�0�����2�

+
�2

6
�kBT�2��0��F� + 2�

s=1




�s��F�
� , �9�

where the chemical potential is

FIG. 1. Schematic of the magnetic field in an AMRO experi-
ment. The polar angle 
 is measured relative to the z axis and the
azimuthal angle � relative to the x axis, which lies in the conducting
plane.
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� = �F�1 −
�2

12
� T

TF
�2

+ ¯
 ,

and we introduce

�s��� =
d2

d�2�����
Js

2�����
1 + �s�0�����2� . �10�

In Fig. 2 we plot the interlayer resistivity �zz=1 /�zz �nor-
malized by �0=1 /�0�, determined from Eqs. �7� and �9� for
an energy- independent � at several different temperatures.
We choose ckF=3 and �c�=5 �where �c=eB /m�� to match
values used in plots in Ref. 31 and plot temperatures of 0,
0.01TF, 0.02TF, and 0.04TF. Deviations from the zero-
temperature result are mainly noticeable in the first few
AMRO peaks, for T /TF�0.02. Interestingly, the minima
seem much less affected by finite temperature than the
maxima, which can be understood from arguments we
present below.

To see why the maxima are affected more than minima
we perform an asymptotic expansion of Eq. �9� in the limit
ckF tan 
→
 for an energy independent �. The derivation
follows that for the T=0 case in Ref. 31. We find the correc-
tion to the zero-temperature result to be �when
�ckF tan 
�� T

TF
�2�1�

��zz =
�0

ckF tan 


�2

6
� T

TF
�2 1

sinh� �

�c� cos 

�

� �cosh� �

�c� cos 

� + �1

− �ckF tan 
�2�sin�2ckF tan 
�

− 2ckF tan 
 cos�2ckF tan 
�
 . �11�

The extrema of the resistivity occur at the Yamaji angles,32

which satisfy

ckF tan 
n = ��n +
�

4
� , �12�

where �=1�3� corresponds to a minimum �maximum� of the
resistivity �zz=1 /�zz. �Note that there will be O�T2 /TF

2� cor-
rections to the Yamaji angles, although as can be seen in Fig.
2, these are not large, and they are not important for our
discussion here.� The convention used here for n is that the
nth minimum follows the nth maximum and n begins at zero.
We can calculate the O�T2 /TF

2� correction to the extrema of
the resistivity using Eq. �11�. We find that at maxima the
relative change in the resistance is

��zz
max�T � 0�

�zz
max�T = 0�

= −
�2

6
� T

TF
�2 1

cosh� �

�c� cos 
n
max� − 1

��cosh� �

�c� cos 
n
max� + �2�n +

3

4
�2
 ,

�13�

and at minima the relative change in resistance is

��zz
min�T � 0�

�zz
min�T = 0�

= −
�2

6
� T

TF
�2 1

cosh� �

�c� cos 
n
min� + 1

��cosh� �

�c� cos 
n
min� − �2�n +

1

4
�2
 .

�14�

In general the numerators in the two expressions will be
comparable, but the denominator in the minima expression is
always greater than 2, whereas the denominator in the
maxima expression can become very small when
�c� cos 
n

max becomes large, leading to a much stronger re-
duction in the resistance at the maxima than increase at the
resistance minima. �It should be noted that assuming tem-
perature independent scattering, as we do in this example, is
somewhat artificial. In general one expects the scattering rate
to have a T2 contribution at low temperatures from electron-
electron scattering in a Fermi liquid, along with contributions
from electron-phonon scattering and scattering of electrons
off disorder, which will generically have different tempera-
ture dependences. We ignore these details in this section to
better illustrate the differing effects of temperature on resis-
tance minima and maxima, but they need to be taken into
account in fitting transport data in experiment.�

B. Anisotropic Fermi surface

We now turn to consider finite temperature effects for an
anisotropic Fermi surface. We allow �0, �, v	, k	, and tc to
vary with � and �. The zero-temperature interlayer conduc-
tivity for a layered metal with anisotropic Fermi surface
properties was calculated by Kennett and McKenzie10 to be

FIG. 2. �Color online� Plot of �zz /�0 versus 
 for an isotropic
Fermi surface with ckF=3 and �c�=5 at temperatures of T /TF=0,
0.01, 0.02 and 0.04.
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�zz =
s0eB cos 


1 − P
�

0

2�

d��
�−2�

�

d��

�
tc���tc����

�0����0����
G��,��,�F�cos ���,��� , �15�

where s0=e2c / ��	4�, P=G�2� ,0 ,�F� is the probability that
an electron will make a full cyclotron orbit about the Fermi
surface before being scattered and

���,��� = �b̂	��� · �kF��� − kF�����

= ��kF���cos�� − �� − kF����cos�� − ���� ,

where we have defined b̂	���= �cos � , sin �� as the direction
of the component of the magnetic field in the x-y plane, and
kF���=kF����cos � , sin ��, where kF��� is the magnitude of
the Fermi wave vector.

Generalizing Eq. �15� for the interlayer conductivity to
finite temperatures is similar to the isotropic case, and again
we integrate over energy,

�zz = s0eB cos 
�
−





d��
0

2�

d��
�−2�

�

d��

��−
� fT

��
� tc��,��tc��,���

�0��,���0��,���
G��,��,��
1 − P���

cos ���,��,�� .

�16�

The factor G�� ,�� ,�� is as in Eq. �5�, and the energy-
dependent ��� ,�� ,�� is

���,��,�� = �����,��cos�� − �� − ���,���cos�� − ���� ,

�17�

where ��� ,���
k	
=�kx
2+ky

2 is the magnitude of the elec-
tron wave vector. Allowed values of � are determined from

the dispersion relation. Equation �16� is our main result and
is independent of whether the interlayer hopping is coherent
�assumed here� or weakly incoherent.10,28,31 The only differ-
ence in AMRO for the two models of transport occurs for
angles near 
= �

2 .1,28,31,33

In order to make analytic progress with Eq. �16� we need
to specify the energy and � dependence of various Fermi
surface properties. In general, AMRO must be calculated nu-
merically, although under certain conditions we may derive
asymptotic expressions. To do so, we note that if �0 never
approaches zero, the largest contribution to the integrand of
Eq. �16� will be from near �=�, where the derivative of the
Fermi-Dirac function is sharply peaked. We can then perform
a Sommerfeld expansion about this point, as in the isotropic
finite temperature case. The zeroth order term gives the zero-
temperature result evaluated at � instead of �F. Under the
conditions

c���,��tan 
 � 1,
eBc
v	��,��
���,��

	
� 1,

we can evaluate the zeroth order term using a stationary
phase calculation.10 To second order in T /TF we can then
write the temperature dependent conductivity, valid near 

= �

2 , for a Fermi surface with �→�+ �
2 symmetry as

�zz�
,�,T� �
eBs0 cos 


1 − P���
2�
���,�0�
−1

c tan 

� tc��,�0�

�0��,�0��
2

��1 + P��� + 2�P��� sin�2c tan 
���,�0�

�cos�� − �0��� +
�2

6
eBs0 cos 
�kBT�2���F� ,

�18�

where �0 satisfies �
�� �b̂	��� ·k	�� ,���=0, ��� ,��

� �2

��2 �b̂	��� ·k	����, and

���� =
d2

d�2��
0

2�

d��
�−2�

�

d��
tc��,��tc��,���

�0��,���0��,���
G��,��,��
1 − P���

cos ���,��,��

�

eBs0 cos 


c tan 


d2

d�2�2�
���,�0�
−1

1 − P���
� tc��,�0�

�0��,�0�
�2

�1 + P��� + 2�P��� sin�2c tan 
���,�0�cos�� − �0���� . �19�

III. NUMERICS

We now outline the numerical scheme we use to test
whether the temperature dependence of the conductivity af-
fects the anisotropy obtained from fits to the scattering rate
1 /� using zero-temperature expressions for the conductivity.
Our approach is as follows: we use the tight-binding disper-
sion relation inferred for Tl2201 from ARPES �Ref. 18� to
simulate the AMRO data we expect to observe at several
different temperatures and azimuthal field angles �, assum-
ing an isotropic scattering rate of the form predicted by

Fermi liquid theory. We then fit to this data using the same
procedure used to fit experimental data in Ref. 9. First, we
allow all parameters to vary in fitting the lowest temperature
data �using the zero-temperature expression for the interlayer
resistivity�. Second, the higher temperature data is fitted as-
suming only the scattering rate is temperature dependent. If
the scattering rate anisotropy is a fitting artifact, fits to
AMRO data simulated with finite temperature expressions
for the conductivity should yield results similar to the fits to
the real data: an anisotropic contribution to the scattering rate
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that varies as T cos 4�. Finally, we include the anisotropic
component of the scattering inferred in Ref. 9 and test that it
is indeed found in the fitting procedure. This is in some sense
a more stringent test of the fitting procedure than actually
fitting experimental data, as we know all of the appropriate
parameters that should be determined in the fitting proce-
dure, whereas in experiment, the exact underlying param-
eters are unknown.

The tight binding dispersion relation determined by Platé
et al.18 is

�2d�kx,ky� = � +
t1

2
�cos kx + cos ky� + t2�cos kx cos ky�

+
t3

2
�cos 2kx + cos 2ky� +

t4

2
�cos 2kx cos ky

+ cos kx cos 2ky + cos kx cos ky�

+ t5 cos 2kx cos 2ky , �20�

where the wave numbers are measured in units of the in-
plane lattice constant a, the ti are hopping parameters and �
is the chemical potential. The values of the parameters are
�=0.2438, t1=−0.725, t2=0.302, t3=0.0159, t4=−0.0805,
and t5=0.0034, all in eV. We use �2d to calculate 1 /�0 and �
as functions of � numerically, for several energies, where we
consider the hole Fermi surface centered on �� ,��. We fit
the output data to give a functional form of 1 /�0 and � as
functions of � and �.

The Fermi surface for the dispersion Eq. �20� exhibits a
�→�+ �

2 symmetry, and so ��� ,�� and 1 /�0�� ,�� also
have this symmetry. This allows us to fit the data to a trun-
cated Fourier series with only cos 4n�, n�Z, terms
present.2,6 We find that 1 /�0�� ,�� may be accurately repre-
sented by the form

1

�0��,��
=

1

�00���
+

1

�01���
cos 4� +

1

�02���
cos 8�

+
1

�03���
cos 12� �21�

and ��� ,�� may be parametrized as

���,�� = �0��� + �1���cos 4� + �2���cos 8� . �22�

For the energy range we are interested in the energy depen-
dence of each of the coefficients can be well approximated as
linear, C���=C0+C1�. Contributions to the integral �Eq.
�16�� from energies far from the Fermi energy are negligible.
In our simulations we use the combination c���F�=ckF
=8.64. The fitting parameters for � and 1 /�0 are given in
Table I.

The remaining functional inputs we need to calculate the
AMRO are the interlayer hopping tc��� and the scattering
rate 1 /��� ,��. We assume the standard isotropic scattering
rate for 1 /����,34,35

1

�
=

1

�0
+ A���kBT�2 + �� − ��2� . �23�

We estimate the parameters 1 /�0 and A for 1 /� from fits to
the isotropic part of the scattering rate in Ref. 9, giving A
= �13.5 meV�−2; 1 /�0 always appears as part of a product
1 /�0��F��0, where 1 /�0��F� is the constant contribution to
1 /�0�� ,�� at the Fermi energy, and we find that
1 /�0��F��0=2.5. We assume the hopping is independent of
energy and use the same expression for the hopping term as
in Ref. 10,

tc��� = t0�sin 2� + �1 sin 6� + �2 sin 10�� . �24�

The parameters �1 and �2 are related to each other by the
symmetry of the crystal lattice, which requires tc���=−tc��
+ �

2 � and hence �1=1+�2. Due to imperfections in the crys-
tal, this relation may not hold exactly, and we allow both
parameters to vary during fitting. The input values are �1
=0.737 and �2=−0.263. The constant t0 enters the overall
normalization and does not need to be specified in our cal-
culation.

With explicit functional forms for all functions appearing
in Eq. �16�, we may perform the angular and energy inte-
grals. Due to the fact that the derivative of the Fermi func-
tion decays quickly away from �=� we only integrate over
the energy from �−5kBT to �+5kBT to cover the range of
energy that contributes to the integral, and we checked that
our results were independent of the energy range for this
choice of integration interval. The values of � we use are 0,
20, 28, 36, and 44 degrees and we generate AMRO for T
=0.001TF–0.04TF, where TF is O�3000 K�. These corre-
spond to temperatures from 3 to 113 K. The output is nor-
malized such that �zz�
=0�=1. The simulated AMRO data
are shown in Fig. 3.

Fitting the simulated data

We fit to the simulated AMRO data using Eq. �24� for
tc��� and parameterize the scattering rate as9,10

1

����
=

1

�
�1 + � cos 4�� . �25�

The Fermi wave vector and cyclotron frequency are param-
etrized as

kF��� = kF�1 + k4 cos 4�� , �26�

and

TABLE I. Fitting parameters for ��� ,�� and 1 /�0�� ,��.

1 /�00 1 /�01 1 /�02 1 /�03 �0 �1 �2

C0 4.768 −0.582 0.035 0.035 1.786 −0.077 0.002

C1 8.097 2.670 −1.388 −0.361 1.039 0.025 −0.030
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1

�0���
=

1

�00
�1 + u cos 4�� . �27�

We use the 2.8 K data to fit to the parameters �, k4, u, �00�,
ckF, �1, and �2. For fits at temperatures above 2.8 K we
assume that only the scattering rate is temperature depen-
dent, and fit only to the parameters �00� and �. The scatter-
ing rate parameters 1 /�00� and � /�00� are plotted as a
function of temperature in Fig. 4. A quadratic fit
a�1+ �b�kBT�2� to 1 /�00� yields a=2.49 and �kBb
=51 K−1, agreeing with the parameter values used to simu-
late the AMRO. The fit values obtained are k4=−0.025, u=
−0.153, ckF=8.607, �1=0.764, and �2=−0.245, which are
within 1–2 % of the input parameter values used in the
simulation.

We find that not only do the fits to the simulated data fail
to reproduce the T cos 4� term observed in the experiments,
we observe essentially no temperature dependence of the an-
isotropy parameter �, suggesting that if the scattering rate
were in fact isotropic the fitting procedure used by Abdel-
Jawad et al.9 would not have yielded anisotropic scattering.
Hence, the anisotropic contribution to the electron-electron
scattering rate measured in recent AMRO experiments is not
an artifact of the fitting procedure, and the system does de-
viate from standard Fermi liquid behavior.

As a further comparison to the experiment in Ref. 9, we
simulated AMRO including anisotropy in the scattering. The
AMRO were generated exactly as above, except that we took
� to be

�

�00�
= − 0.154 +

T

32.5
,

as determined from Ref. 9. Note that unlike the isotropic
piece of the scattering, where we included Fermi liquidlike
energy dependence we took this term to be energy indepen-
dent, since its origin �and energy dependence� are not well
established. The Fermi surface parameters we found from
fitting the AMRO were k4=−0.028, u=−0.152, ckF=8.598,
�1=0.747, �2=−0.257 which are in good agreement with
those found above for isotropic scattering. In Fig. 5 we dis-
play the variation of 1 /�00� and � /�00� with temperature
and compare them to the values found in Ref. 9 that were

FIG. 4. �Color online� Plot of fit parameters 1 /�00� and � /�00�
as functions of temperature.

FIG. 3. �Color online� AMRO
data calculated numerically using
paramters appropriate for thallium
cuprate, assuming isotropic scat-
tering. The values of � used are
0°, 20°, 28°, 36° and 44°. Note
the change in vertical axis limits
in the last plot. The plots shown
correspond to temperatures of 2.8,
5.7, 11.3, 28, 56, and 113 K.
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used as input. Apart from a slight shift in the T=0 intercept
of � as a function of temperature from the input—the best fit
line is � /�00�=−0.03+T /30.5, the linear trend with tem-
perature is very much in evidence, with a very similar slope
to the input, in strong contrast to the essentially temperature
independent � in Fig. 4 above.

IV. CONCLUSIONS

In this work we presented expressions for the interlayer
conductivity of layered metals with either an isotropic or
anisotropic Fermi surface, allowing for thermal effects. We
used the expression for the conductivity for a layered metal
with anisotropic Fermi surface properties to simulate the
AMRO expected an isotropic scattering rate consistent with
Fermi liquid theory. Fitting to the simulated data using the
same procedure used to fit the experimental data in Ref. 9

does not reproduce the anisotropic T cos 4� piece of the
scattering rate. However, when anisotropic scattering is in-
cluded as an input to the simulated AMRO, the inferred scat-
tering rate is essentially the same as that included in the
simulation. Hence, we have confirmed that including finite
temperature effects whilst taking into account anisotropy in
the dispersion does not affect the conclusion that there is an
anisotropic contribution to the scattering rate of thallium cu-
prate.

The theory presented here is applicable to any layered
metal in which AMRO may be observed, and provides the
means to analyze AMRO data for temperatures at which
T /TF grows large enough that finite temperature effects on
AMRO become significant. In Sec. II A we observed that for
T /TF�0.02, finite temperature corrections to AMRO appear
to be important. This estimate is based on considering the
idealized situation of an isotropic dispersion with isotropic
temperature independent scattering and is mainly meant to
give a guide as to where one should be careful in fitting
experimental data—we anticipate that in most cases aniso-
tropy effects should not change our estimate by more than
factors of order unity. Having a threshold above which there
is an expectation of finite temperature corrections may allow
for a more precise interpretation of current AMRO data at
higher temperatures, for example in cuprate experiments26

where the maximum value of T /TF is �0.03–0.04 or in
Na0.48CoO2, which has a Fermi energy around 250 meV,36

and AMRO experiments have been performed at tempera-
tures as high as T /TF�0.02.37 This theory will also enable
accurate quantitative analysis of future high temperature
AMRO experiments.
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